Haskell Snippet, start of bayes probability library
I am adding support for text analysis including bayes classification. The code is based on Toby Segaran's PCIL python source code and contains some of those utility functions.
Libraries used:
Type definitions:
Utilities for finding the word frequency in a document:
Utilities for calculating the fisher probability:
Some example test cases:
Libraries used:
import System.Environment
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.List
import Text.Regex (splitRegex, mkRegex)
Type definitions:
type WordCat = (String, String)
type WordCatInfo = (WordCat, Int)
type WordInfo = (String, Int)
Utilities for finding the word frequency in a document:
--
-- | Find word frequency given an input list using "Data.Map" utilities.
-- With (Map.empty :: Map.Map String Int), set k = String and a = Int
-- Map.empty :: Map k a
-- foldl' is a strict version of foldl = foldl': (a -> b -> a) -> a -> [b] -> a
-- Also see: updmap nm key = Map.insertWith (+) key 1 nm
-- (Original code from John Goerzen's wordFreq)
wordFreq :: [String] -> [WordInfo]
wordFreq inlst = Map.toList $ foldl' updateMap (Map.empty :: Map.Map String Int) inlst
where updateMap freqmap word = case (Map.lookup word freqmap) of
Nothing -> (Map.insert word 1 freqmap)
Just x -> (Map.insert word $! x + 1) freqmap
--
-- | Word Category Frequency, modified version of wordFreq to
-- handle Word Category type.
wordCatFreq :: [WordCat] -> [WordCatInfo]
wordCatFreq inlst = Map.toList $ foldl'
updateMap (Map.empty :: Map.Map WordCat Int) inlst
where updateMap freqmap wordcat = case (Map.lookup wordcat freqmap) of
Nothing -> (Map.insert wordcat 1 freqmap)
Just x -> (Map.insert wordcat $! x + 1) freqmap
-- | Pretty print the word/count tuple and output a string.
formatWordFreq :: WordInfo -> String
formatWordFreq tupl = fst tupl ++ " " ++ (show $ snd tupl)
formatWordCat :: WordCatInfo -> String
formatWordCat tupl = frmtcat (fst tupl) ++ " " ++ (show $ snd tupl)
where frmtcat infotupl = (fst infotupl) ++ ", " ++ (snd infotupl)
Utilities for calculating the fisher probability:
wordFreqSort :: [String] -> [(String, Int)]
wordFreqSort inlst = sortBy freqSort . wordFreq $ inlst
--
-- | bayes classification train
trainClassify :: String -> String -> [WordCatInfo]
trainClassify content cat = let tokens = splitRegex (mkRegex "\\s*[ \t\n]+\\s*") content
wordcats = [(tok, cat) | tok <- tokens]
in wordCatFreq wordcats
--
-- | Return only the tokens in a category.
tokensCat :: [WordCatInfo] -> String -> [WordCatInfo]
tokensCat tokens cat = let getTokCat row = snd (fst row)
tokbycat = filter (\x -> ((getTokCat x) == cat)) tokens
in tokbycat
tokensByFeature :: [WordCatInfo] -> String -> String -> [WordCatInfo]
tokensByFeature tokens tok cat = filter (\x -> ((fst x) == (tok, cat))) tokens
--
-- | Count of number of features in a particular category
-- Extract the first tuple to get the WordCat type and then the
-- second tuple to get the category.
catCount :: [WordCatInfo] -> String -> Integer
catCount tokens cat = genericLength $ tokensCat tokens cat
-- Find the distinct categories
categories :: [WordCatInfo] -> [String]
categories tokens = let getTokCat row = snd (fst row)
allcats = Set.toList . Set.fromList $ [ getTokCat x | x <- tokens ]
in allcats
featureCount :: [WordCatInfo] -> String -> String -> Integer
featureCount tokens tok cat = genericLength $ tokensByFeature tokens tok cat
--
-- | Feature probality, count in this category over total in category
featureProb :: [WordCatInfo] -> String -> String -> Double
featureProb features tok cat = let fct = featureCount features tok cat
catct = catCount features cat
in (fromIntegral fct) / (fromIntegral catct)
--
-- | Calcuate the category probability
categoryProb :: [WordCatInfo] -> String -> String -> Double
categoryProb features tok cat = initfprob / freqsum
where initfprob = featureProb features tok cat
freqsum = sum [ (featureProb features tok x) | x <- categories features ]
weightedProb :: [WordCatInfo] -> String -> String -> Double -> Double
weightedProb features tok cat weight = ((weight*ap)+(totals*initprob))/(weight+totals)
where initprob = categoryProb features tok cat
ap = 0.5
totals = fromIntegral $ sum [ (featureCount features tok x) | x <- categories features ]
-- Inverted Chi2 formula
invChi2 :: Double -> Double -> Double
invChi2 chi df = minimum([snd newsum, 1.0])
where m = chi / 2.0
initsum = exp (-m)
trm = exp (-m)
maxrg = fromIntegral (floor (df / 2.0)) :: Double
-- Return a tuple with current sum and term, given these inputs
newsum = foldl (\(trm,sm) elm -> ((trm*(m/elm)), sm+trm))
(trm,initsum) [1..maxrg]
fisherProb :: [WordCatInfo] -> [String] -> String -> Double
fisherProb features tokens cat = invchi
where initw = 1.0
p = foldl (\prb f -> (prb * (weightedProb features f cat initw))) 1.0 tokens
fscore = (-2) * (log p)
invchi = invChi2 fscore ((genericLength features) * 2)
Some example test cases:
simpleTest1 :: IO ()
simpleTest1 = do
content <- readFile badfile
let tokens = splitRegex (mkRegex "\\s*[ \t\n]+\\s*") content
wordfreq = wordFreqSort tokens
mapM_ (\x -> (putStrLn $ formatWordFreq x)) wordfreq
putStrLn $ "Number of tokens found: " ++ (show . length $ wordfreq)
simpleTest2 :: IO ()
simpleTest2 = do
let badfreq = trainClassify "viagra is bad cialis is good" "bad"
goodfreq = trainClassify "I like to run with foxes they cool" "good"
allfreq = badfreq ++ goodfreq
mapM_ (\x -> (putStrLn $ formatWordCat x)) allfreq
simpleTest3 :: IO ()
simpleTest3 = do
let aa = [(("1", "aa") :: (String, String), -1), (("2", "aa"), -1), (("3", "bb"), -1)]
tokensAA = tokensCat aa "aa"
countAA = catCount aa "aa"
c = featureProb aa "1" "aa"
putStrLn $ "-->" ++ (show countAA) ++ " // " ++ (show tokensAA) ++ " // " ++ (show c)
simpleTest4 :: IO ()
simpleTest4 = do
let aa = [(("dogs dogs", "good") :: (String, String), 3),
(("viagra", "bad") :: (String, String), 5),
(("fox", "good") :: (String, String), 2),
(("dogs", "good"), 4),
(("3", "bad"), 5)]
bb = categories aa
tokensAA = tokensByFeature aa "dogs" "good"
c = featureProb aa "dogs" "good"
d = catCount aa "good"
x = categoryProb aa "xdogs" "good"
z = weightedProb aa "dogs" "good" 1.0
putStrLn $ "-->" ++ (show d) ++ "//" ++ (show bb) ++ "//" ++ (show z)
simpleTest5 :: IO ()
simpleTest5 = do
let aa = [(("dogs dogs", "good") :: (String, String), 3),
(("viagra", "bad") :: (String, String), 5),
(("fox", "good") :: (String, String), 2),
(("dogs", "good"), 4),
(("3", "bad"), 5)]
testdata = [ "xdog" ]
bb = fisherProb aa testdata "bad"
putStrLn $ "-->" ++ show bb
Comments