Random post on pytorch and AI resources

  Various AI resources.


First a print out of versions:

https://huggingface.co/blog

https://openai.com/news/

https://www.anthropic.com/news/

https://deepmind.google/discover/blog/

https://ai.meta.com/blog/

https://karpathy.github.io/

https://sebastianraschka.com/

https://wandb.ai/articles

https://www.technologyreview.com/

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/

https://lmarena.ai/leaderboard

...

# Basic pytorch, print version and capability
# Launch with python3 basic1.py or python basic1.py

import torch
from torch import nn

def main():
print("PyTorch Version:", torch.__version__)
print("CUDA Available:", torch.cuda.is_available())
if torch.cuda.is_available():
print("CUDA Version:", torch.version.cuda)
print("Number of GPUs:", torch.cuda.device_count())
for i in range(torch.cuda.device_count()):
print(f" GPU {i}: {torch.cuda.get_device_name(i)}")
else:
print("No CUDA-compatible GPU found.")
print("MPS Available (for macOS):", torch.backends.mps.is_available() if hasattr(torch.backends, "mps") else "Not supported in this build")

if __name__ == "__main__":
main()



Comments

Popular posts from this blog

JVM Notebook: Basic Clojure, Java and JVM Language performance

On Unit Testing, Java TDD for developers to write

Is Java the new COBOL? Yes. What does that mean, exactly? (Part 1)